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Transmission of an acoustic pulse through 
a plane vortex sheet 
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This paper discusses the linear theory of the transmission of an acoustic pulse 
through a plane discontinuity of velocity. It is shown that elementary ideas of 
geometrical acoustics which have received much attention in the recent literature 
lead to the erroneous prediction of a zone of silence. It is in precisely this zone 
that unstable disturbances and broad-fronted pulses of enhanced intensity 
propagate, having been triggered-off by the arrival of the pulse a t  the vortex 
sheet. The apparent qualitative agreement between geometrical acoustics and 
experimental data regarding sound radiation from the interior of supersonic jets 
is shown to be purely fortuitous, and it is argued that a complete analysis of such 
problems must depend on a deeper and possibly non-linear treatment. 

1. Introduction 
The study of acoustic radiation from the interior of supersonic jets has attracted 

much attention in recent years (Ribner 1964 ; Berman & Ffowcs Williams 1970). 
It is generally recognized that refraction at  the surface of the jet alters the nature 
of the radiation field, but the extent to which this modifies the simple picture of 
acoustic radiation from convected turbulent quadrupoles (Lighthill 1952) is still 
an open question. Ribner (1964) suggests that such effects are confined merely 
to the creation of a zone of silence downstream of the acoustic sources, so that 
the sound is refracted ‘outwards’ from the jet. However, a large body of work 
on the problem of jet stability, culminating in the comprehensive study of Miles 
(1958), leads one to suspect that any attempt to extrapolate classical notions of 
geometrical acoustics may result in a misleading, or indeed grossly inaccurate, 
picture of the radiation field. A more careful analysis which takes account of 
possible instabilities is now required. 

The present study arose from an attempt to apply such ideas to the calcula- 
tion of the radiation field due to a stationary source within a supersonic jet. In  
particular such a source would model the acoustic collision product of a turbulent 
pocket with one of the compression waves which occur at  roughly equal intervals 
along an imperfectly expanded supersonic jet of finite diameter. These waves 
focus onto the wall of the jet causing the sharp necking characteristic of the 
cellular structure of such jets. Since sound radiation within the jet can only pass 
downstream of such a source, it was quickly realized that the exact nature of the 
geometry of the jet in the vicinity of the source is largely irrelevant, the problem 
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reducing to that of calculating the field transmitted through a velocity dis- 
continuity. Purther, the motion being fully supersonic, the precise form of the 
source is unimportant, and we shall present an idealized problem in which the 
far field of the acoustic radiation transmitted through a plane vortex sheet is 
examined. The source of sound will be assumed to lie close to the velocity dis- 
continuity. 

In  modelling the jet in this way we are neglecting effects due to finite jet 
diameter. The most important limitation on our analysis results from the fact 
that natural oscillations of the vortex sheet, which in our case are neutrally stable, 
can definitely be shown to be unstable for a finite diameter jet (Berman & 
Ffowcs Williams 1970). Such instability becomes significant when the acoustic 
coupling between opposite faces of the jet becomes large, and occurs after a 
time which is long enough for sound to bounce backwards and forwards several 
times between these faces. Our analysis essentially calculates the transmitted 
field due to that sound which is emitted before these finite diameter effects 
become important. 

The problem of the transmission and reflexion of sound a t  a plane velocity 
discontinuity was considered briefly by Rayleigh (1945)) who, however, sub- 
sequently applied his results incorrectly to the determination of the path of an 
acoustic ray through a fluid of continuously varying velocity. The f i s t  correct 
treatments of the problem of the transmission of a plane acoustic wave through 
an interface of relative motion appear to be due to Miles (1957) and Ribner 
(1957). Earlier attempts by Rudnick (1946), Keller (1955) and Franken & Ingard 
(1956), are shown by Miles to be in error. All three papers apply the kinematic 
boundary condition at  the interface incorrectly, and in addition the last two 
papers fail to apply the appropriate radiation condition. 

In  two later papers (Miles 1958 ; Miles & Fejer 1963) the stability of the velocity 
discontinuity (vortex sheet) is studied, and in particular an asymptotic approxi- 
mation to the displacement of the vortex sheet following a suddenly imposed, 
spatially periodic velocity is obtained. These papers essentially clarify and correct 
the earlier work of Landau (1944), Hatanaka (1949) and Pai (1954). Each of these 
authors ignored the existence of branch points for the eigenvalue equation and 
accepted the eigenvalues given by its two possible branches. Miles confirms their 
results regarding stability, but rules out certain of their neutral eigenvalues, or 
resonances. 

An extention of this earlier work was attempted by Gottli'eb (1960) who con- 
sidered the problem of a source near a velocity discontinuity. He treats in detail 
a line source oscillating at  a fixed frequency, and sketches the extention of his 
results to the case of an oscillating point source. Since Mach numbers no greater 
than about 1.2 are considered, he gives no discussion of the resonances predicted 
by Miles when the Mach number exceeds 2. Indeed apart from a slight peaking, 
his graphical results do not predict substantially greater wave amplitudes than 
if the source were radiating into a homogeneous medium. More importantly from 
our point of view, he dismisses completely the unstable modes due to Helmholtz 
instability of the interface, which in any steady state problem would give an 
infinitely large contribution. Gottlieb assumes that such instabilities are the 
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result of large wavelength disturbances of the order of the jet diameter, and 
therefore claims to confine himself to the case of disturbances which emit sound 
of wavelength much smaller than the diameter. Actually consideration of a 
simple ‘ switch-on’ mechanism for his source, the switch-on time subsequently 
being allowed to tend to minus infinity, reveals that in deriving his solution 
Gottlieb has omitted a term corresponding to the crossing of a pole in the com- 
plex frequency plane, and for Mach numbers less than 242 ,  this would always 
give an infinitely large contribution. 

It is therefore not possible to regard Gottlieb’s results as forming a basis for 
the synthesis by Fourier analysis of the solution for more general source distribu- 
tions. Further, it will be seen that when resonances are possible they actually 
suppress his geometrical acoustics solution, and result in the broadening out of 
the transmitted signal in the resonant directions together with a large increase 
in intensity. Evidently the harmonic problem treated by Gottlieb is irrelevant 
in so far as it is desired to give a proper interpretation of an essentially unstable 
situation. 

In the more recent discussion of this problem given in the treatise of Morse & 
Ingard ( 1968) the authors completely ignore the existence of instabilities and 
resonances. Their treatment is purely one of geometrical acoustics which is 
claimed to predict a definite shadow zone downstream of the source, in spite of 
the fact that it  is in precisely this region that exponentially growing disturbances 
develop ! 

In order to obtain a clear grasp of the physical processes involved in the problem 
of acoustic radiation from a jet, it would appear to be appropriate, following 
Miles (1958), to formulate an initial value problem. Ideally one would like to 
observe the response of an initially steady, undisturbed flow to an impulse, which 
corresponds to determining the Green’s function of the problem. To be sure the 
inevitable final state is one of exponential growth, but now we have the im- 
mediate interpretation of the solution as one in which much more sound is 
emitted by the system than was initially supplied by the source, and further, 
that the energy of this excess radiation, which tends to be confined to the region 
downstream of the source, is extracted directly from the shear layer. 

This approach has been developed in a recent paper by Friedland & Pierce 
(1969), who consider the transient solution for the rejZexion of line source 
generated waves by a plane vortex sheet. In  their problem, however, the source 
is at  rest relative to the fluid of the jet and, although they are able to derive an 
exact solution for the reflected wave, the physically more significant transmitted 
wave is set aside as being too difficult. 

The analysis of the present paper is essentially similar to that of Friedland & 
Pierce except that in the three-dimensional problem treated here exact evalua- 
tion of the Fourier integrals involved is not possible and recourse must be had to 
asymptotic methods. However, it is suggested that our results will be of more 
value in providing further insight into the problem of noise radiation from super- 
sonic jet aircraft, since the sound transmitted from the interior of the jet is of 
primary concern in such applications. 

Previous work based on linear theory (Ribner 1964) has resulted in the idea, 
23-2 
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mentioned above, that the existance of a zone of silence causes the sound to be 
refracted outwards from the jet. In  fact experiments indicate that this conclusion 
is qualitatively correct, but we shall see that an explanation based on linear theory 
is definitely wrong. A correct linear analysis leads to conclusions which cannot 
be predicted by a simple ray theory. Presumably, therefore, a proper interpreta- 
tion of the experimental results must await a deeper study which takes account 
of non-linear effects. 

2. Formulation of the problem 
Consider two ideal fluids occupying the half-spaces z < 0 and z > 0, and 

characterized by subscripts 1 and 2 respectively. Without losing any significant 
features of the problem, suppose that both fluids have the same sound speed, a, 
and are of equal density. The fluid in the lower half space is assumed to have a 
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FIGURE 1. The initial configuration of the vortex sheet and point source. 

uniform velocity l7 parallel to the x axis, and, with the y axis chosen such that 
xyz form a left-handed triad, to have a source 6(x-x,)6(t-to) at the point 
xo (zo < 0) near the interface (figure 1). The fluid in z > 0 is assumed to be at 
rest. 

and q52 denote the velocity potentials of the small disturbed motions 
in the two regions. Then 

Let 

in z < 0, and 

inz > 0. 



Transmission of a n  acoustic pulse 357 

and q52 on the interface follow from re- 
quiring (i) continuity of pressure, (ii) continuity of normal velocity of the vortex 
sheet. These are readily applied when the velocity field is decomposed into an 
assembly of plane wave contributions. The problem then is to determine and 
q5z satisfying conditions (i) and (ii); together they constitute the Green's function 
of the problem. 

Following Miles (1957) and Gottlieb (1960) it is convenient to start by writing 
down the solution to the first of equations (2.1) in free space, and then to intro- 
duce reflected and transmitted waves to account for the presence of the vortex 
sheet. The boundary conditions (i) and (ii) then provide sufficient information 
to determine these additional waves. Plane wave decomposition of a velocity 
field $(x) t),  say, is achieved by defining its Fourier transform $(k, w )  by 

The boundary conditions relating 

where 6 > 0. 
For a function $(x, t ) ,  vanishing fort < to and representing a stable disturbance, 

$(k,w), for each fixed wave-number vector k, is a regular function of the 
frequency w throughout the upper complex w plane. On the other hand, if 
instabilities are present which grow exponentially with time, 1Cr(k, w )  will possess 
singularities in the upper half-plane, and then to ensure that the solution vanishes 
for t < to the positive quantity 6 must be large enough for the path of integration 
in the w plane to pass above all these singularities. Lighthill (1960) has given a 
comprehensive discussion of these points. 

3. The transmitted pulse. Geometrical acoustics contribution 
The procedure outlined above is essentially the same as that given by Gottlieb 

(1960) and followed by Friedland & Pierce (1969), and we shall be content merely 
to write down the Fourier integral representation of the solution. We are con- 
cerned here only with the transmitted wave & say, and it is an easy matter t o  
show that 

dww(w-  Ul)expi{Z(x-x,) + m ( y - y o )  

(3.1) 

( X  3 O ) ,  where e > 0 is large enough for the integration path in the wplane to 
lie above all the singularities of the integrand, i.e. of the transmission coefficient. 
The functions y1 and yz are defined by 
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each having a positive imaginary part along the line of integration in the w plane, 
and 1 and m are respectively the wave-number components in the I): and y 
directions. 

It may be verified that the causality condition is satisfied by the solution 
(3.1), i.e. that it vanishes for t < to-zo/a, at which time the pulse first impinges 
on the vortex sheet. When this inequality is not satisfied the integral may be 
evaluated for a(t - to) > x - xo by collapsing the line of integration about a closed 
contour in the o plane on which the phase is real. This is the procedure employed 
by Friedland & Pierce and takes account of any poles of the integrand which 
are crossed over, the branch lines joining the branch points of y1 and of y2 on 
the real axis being completely contained within the contour. In their case the 
final contour was an ellipse together with a contribution about the y2 branch 
line. Our case is similar, but only reduces to an ellipse, plus that portion of the 
y2 branch line lying outside the ellipse, when lxol < x .  In this case the ellipse is 
given by 

where o = + iq. Any pole of the integrand which lies inside the contour gives 
no contribution to the solution. The details are similar to those of Friedland SS 
Pierce and will not be repeated here. 

The contribution from the integration about the contour cannot be evaluated 
exactly and the method of stationary phase may be used to obtain the geometrical 
acoustics contribution to the transmitted wave. In  presenting these results it is 
convenient to divide the far field into three regions defined by the following 
inequalities. 

Region I 

Here M = Ula is the Mach number of the jet flow, and 

I x I = [(x - xoy + (y - yo)2 + 2214. 

The classical refracted wave occupies this region and was treated by Gottlieb 
(1960). 

Region I1 1 IJJ-(;-xo)/ < [ ( ~ - ~ o ) 2 + ( Y - ! / o ) 2 1 ~  
I XI 1x1 

This is the zone of relative silence and contains the so called refracted arrival wave 
(cf. Friedland & Pierce 1969, $V). 

Region I11 

This region was absent from Gottlieb’s analysis since it exists only for M > 2. 
It is here that the resonant modes propagate, and may be compared with the 
corresponding region of Friedland & Pierce. 
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Let us now define the quantities T(x), the transmission coefficient for waves 
arriving at the point x ( z  > 0); and y(x), which is proportional to the projection 
of the unit normal of these waves onto the z axis prior to their refraction at the 
jet interface 

[ ( X - X 0 ) 2 + ( g - g o ) 2 ]  +’ 

(3.4) 
1 

T ( x )  = 

1x1 
1 -  

In  these expressions the positive sign is taken when x lies in region I and the 
negative sign in region 111. The zone of relative silence, region 11, will be con- 
sidered separately. 

The elementary stationary phase analysis gives the following expression for 
the geometrical acoustic field, #A, in regions I and 111: 

The argument of the 6 function is correct to terms of order ( Z ~ / Z ) ~ ,  its vanishing 
having the obvious interpretation as representing the arrival of the refracted 
pulse at  x at time t, the pulse having travelled by the least time path from the 
source determined by the stationary phase calculation. For equal values of 1x1 
the delay time is seen to be greater in the upstream region I than in region I11 
(see figure 2 ) ;  this is because while the pulse is still in the jet it is convected 
downstream at speed U so that waves which eventually radiate into region I 
are retarded and those into region I11 speeded-up. Note also that as M -+ 0 
region I1 and I11 cease to exist, and T -+ 1, and the field of a source radiating 
into a homogeneous medium is recovered. 

The form of the field in the zone of relative silence is somewhat different. The 
pulse still has a sharp front, but now there is no singularity, the field switching 
on to a finite level at time 

As noted by Gottlieb, the least-time path for reaching an observer in the zone of 
relative silence requires attenuation of the wave as it travels from the source to 
the surface of the jet. This is reflected in the solution (3.1) by the appearance 
of the factor exp ( - i y 2 z o ) ,  the argument of which is real and negative for waves 
propagating into region 11. The formal expression for the acoustic mode in region 
I1 has the form 

7-w 
7 

(3.7) 

#A = 
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where H is the Heaviside unit function and 

U +  

FIGURE 2. Section of the stable transmitted field of the acoustic pulse in the plane y = yo. 
The Mach number M = 3 and the dimensionless distance of the source from the interface, 
/ zo l /a ( t - t0 ) ,  is equal to 0.05. Regions I, I1 and I11 are marked, and the curve shows the 
shape of the wave front. In regions I and 111 the acoustic field is that of a pure pulse, 
but in the zone of relative silence, region 11, the pulse is diffuse and decays in intensity 
inversely as the distance from the wave front. Sections of the Mach cones are also shown: 
(i) the Mach cone of $tl; (ii), (iii) the two Mach cones of q5t,. The angles 0, and 0, arc given 
by sin 8, = l/(M+ l ) ,  sin 0, = l/(M- l) ,  in accordance with geometrical acoustics, so 
that region 111 exists only for M > 2. 

This should be compared with the corresponding term in the solution of the 
two-dimensional reflexion problem treated by Friedland & Pierce. They derive 
an expression for the refracted arrival wave which propagates ahead of their 
reflected acoustic pulse. However, a close examination of their result reveals that, 
except where it merges with the reflected pulse, the refracted arrival wave falls 
off inversely as the distance from the source, and so is not responsible for the 
radiation of energy into the far field. In  two dimensions only waves falling off 
inversely as the square root of the distance, or slower, would account for such 
radiation. Hence it is not at  all surprising that our asymptotic analysis has not 
resulted in such a refracted arrival forerunner to the acoustic pulse. 
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4. The resonance modes 
The geometrical acoustics solution presented in the previous section is valid 

at  all points of the far field except those lying along certain critical directions 
in region 111. Waves which propagate along these directions are in resonance with 
neutral oscillations which can be sustained by the interface, and have phase 
velocities in the x, y plane equal to the phase velocities of these neutral modes. 
In these directions the transmission coefficient T ( x )  is infinite, which corresponds 
mathematically to the coincidence of the point of stationary phase in the w plane 
and a real pole of the transmission coefficient. Actually there is now no contribu- 
tion from stationary phase, a careful analysis showing that the stationary phase 
term tends continuously to zero as the resonance angle is approached. The 
excitation of these resonant modes must now be considered. 

The denominator of the integrand of (3.1) may be factorized in the following 
manner 

The first bracket on the right vanishes at  w = gUZ on the real axis provided that 

so that M must be at  least greater than 2 for there to be any contribution from 
this pole. Miles (1958) has shown further that if 

(4.3) 

two real zeros of the second bracket on the right of (4.1) exist at 

uz 1 
2 - 2  

u = - + - [ U212 + 4a2(Z2 + m2) - 4a(12 + m2)* [ UzZ2 + a2(12 + m2)]*]*. (4.4) 

When the inequality (4.3) is not satisfied these two poles lie at  conjugate points 
in the complex w plane. This case, which gives rise to  exponentially growing 
modes, will be considered later. 

The contribution from the pole at  w = +UZ which lies outside the integration 
contour in the w plane, say, may be written immediately in the form 

UlZl H ([t&P - 11 12- m2) I($&P- 1) 12 - m218 
8m2 + (8 - M 2 )  Z2 

W 

& =  &2ss_ dl dm 

+ exp [i {Z(x - xo) + m(y - yo) + yl(z + zo) - 4 02 (t  - t o ) ) ] .  (4.5) 

It is convenient now to make the transformation m = pill, in which case (4.5) 
may be expressed in the form 

dZdLcUlZl h W )  exp [ i U X  -xo) +P(Y -Yo) 
+ h(z + 20) - &U(t - to)) ]  

8p2+(8-M2)  2 

where 
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The method of stationary phase may now be applied to the p integration, after 
which the integration with respect to 1 may be performed exactly (see Lighthill 
1958). The analysis is straightforward and yields 

M ( $ M 2 -  l ) ~ ( ~ + z , ) ~ H ( M - 2 )  H{BU ( t - to )  

'ti = [ M 2 ( y - y o ) 2 + ( 8 - M 2 )  ( ~ + 2 , ) ~ ]  I&U(t-t,)- (x-x,) 
-(x-x0)-(*M2- 1 ) ~ [ ( y - y 0 ) 2 + ( 2 + 2 , ) 2 ] ~ )  

- ( i M 2 -  l)i [(y - yo)2 + ( 2  + Z 0 ) 2 ] t l +  

X (4.7) 47rCc[(y-y0)2+ ( 2 + z o ) 2 ] ~ '  

1 

This result may be interpreted as follows. 
The surface 

+U(t - to) - (x- xo) - ($K- 1)6 [(y - yo)2+ ( z  + Z0)2]*  = 0 (4.8) 

x = x o + ~ U ( t - t o ) ,  y = yo, 2 = - 2  07 (4.9) 

is a circular semi-cone whose vertex is at  the point 

and whose axis lies on the line defined parametrically through t by (4.9). The 
surface is confined to the upstream side of the vertex and represents a Mach cone 
sweeping downstream a t  half the jet velocity, and inclined a t  each of its points 
a t  such an angle that it advances into the undisturbed fluid with a normal 
velocity equal to the velocity of sound. The cone may be extended forward 
through its vertex to intersect the surface z = 0 in a hyperbola. This hyperbola 
marks out a resonant disturbance which moves downstream without attenuation 
at  speed +O, and whose motion has been triggered-off by the arrival a t  the inter- 
face of acoustic waves satisfying wIE = 6U. The first such resonant waves to 
reach the surface fill up the region about the vertex of the hyperbola, and have 
the larger z components o f  wave-number. Resonant waves with smaller values 
of this wave-number component arrive later and gradually extend the disturbed 
region of the surface along both arms of the moving hyperbola. It is not difficult 
to see why such a Mach cone should develop. The arrival of a resonant wave a t  
the interface excites the surface into this resonant mode of oscillation, which, 
once started does not need to be maintained by an external stimulus. Thus the 
surface behaves as if it were continuously being excited by the arrival of resonant 
modes and so continues to emit energy in the resonant direction. In  fact this 
energy must be extracted directly from the shear layer. 

Hence the correct interpretation of the solution (4.7) is that it represents the 
Mach cone of a neutrally stable disturbance moving supersonically downstream 
on the surface of the jet. Convergence of the Mach lines from each point of this 
disturbance through the vertex of the cone account for the singular behaviour 
of the solution a t  that point. This conclusion is borne out by a simple ray analysis 
which reveals that waves emitted from the source at time to and satisfying 
011 = $U are refracted a t  the vortex sheet and ultimately come to lie on the 
cone (4.8) at time t .  

Now these resonant waves are precisely those for which the geometrical 
acoustics approximation of the previous section fails. But since the normal 
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velocity of the Mach cone is equal to the velocity of sound, it is clear that the 
acoustic pulse of (3.6) must in reality merge into the Mach cone solution (4.7) 
so that the latter may be imagined to touch the surface of the pulse. Also since 
this will occur at  those points on the cone generated by resonant waves refracted 
at  the surface, the curve of intersection of the pulse and cone marks the limit of 
the upstream extent of the cone, since the latter is non-existent before the arrival 
of the resonant waves. The mathematical reason for this cut-off is that for points 
further upstream the pole at  w/l = &U lies within the integration contour in the 
w plane and so does not contribute to the solution. The cone otherwise lies down- 
stream of the pulse and is more intense in that (u) its amplitude falls off inversely 
only as the square root of the distance from the jet, and ( b )  the three halves 
singularity of the solution (4.7) is stronger than the S function of the pulse. 

When condition (4.3) is satisfied there is a further resonant contribution to 
the solution q5tz, say, corresponding to the poles of the transmission coefficient 
at  the points determined by (4.4). In  view of the complexity of the expression 
for these points it is not possible to repeat in full the above analysis. It is possible, 
however, to make some general comments on the nature of the corresponding 
terms in the solution. 

Consider the general expression for the solution given by (3.1); then the con- 
tribution due to a pole at  a point given by (4.4) lying outside the integration 
contour in the w plane is 

dldm w(w - 771) 
H ( M  - 242 (?)1) 

m 

x exp [i(t(x- xo) + m(y - yo) + ylz - yzzo - ~ ( t  - t o ) ) ] ,  (4.10) 

where y l ,  y z  are easily shown to be real. Consider the term 

(4.11) 

It is readily verified that D is a function of (m/1)2 alone. If, as before, we make the 
substitution m = ,u I 1 1, and define 

- 
Y1 = Yl / k  72 = YZlG fi = 4, 

where now Tl, Y z ,  Q are functions of pZ alone, then (4.10) takes the form 

x exp [il((x - xo) + ,u(y - yo) + rl 2 - rzzo - Q(t - to)}] .  (4.12) 

Now apply stationary phase with respect to the ,u integration. To do this we 
must solve 

Y - Y o +  (~ /a ,uHYlz-Y,zO-  W - t o ) }  = 0 

for the stationary value, ,uo, say, after which the final result can be shown to have 
the general form 
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where C is a dimensionless function of (x, t ,  M ) ,  and X has the dimensions of 
length and is proportional to the distance of x from the jet interface. The ex- 
pression (4.13) has the same form as & (equation (4.7)), and may be interpreted 
in a similar way. The surface 

Q(t - t o )  - (x -xo) -po(y - yo) -712 f 7 2 2 0  = 0 (4.14) 

represents a Mach ' cone ' obtained by eliminating ,u from the equations 

Q(t - to )  - (x - xo) - ,u(y - 9 0 )  - 1/12 + 7 2 z o  = 0, (4.15) 

(4.16) 

The two planes (4.15), (4.16) intersect along a Mach line which touches the 
Mach cone at  each of its points in z > 0. Further, it may be shown that the phase 
surface (4.15) is tangential to the cone along such a line, as expected on physical 
grounds. The resonant disturbance producing such a Mach line lies at the inter- 
section of the Mach line with the plane z = 0, i.e. a t  

a -  
aP 

~ - y o + - ( ~ 1 2 - 7 2 z o - Q ( t - t 0 ) )  = 0. 

(4.17) I x = xo - ~,,ulL(a72/a,u) + 7 2 x 0  + Q(t - t o ) ,  

Y = Yo + zO(a72/+) + (aQ/aP) ( t  - t o ) ,  
z = 0, 

and so moves over the interface at  a velocity v given by 

v = (a, (aQ/a,u), o}, 
which, in general, is different for different values of p. Hence, since p varies with 
the direction of propagation of the incident resonant wave, it is clear that the 
resonant energy sources located on the surface of the jet do not propagate at 
the same velocity, so that, unlike the hyperbolic disturbance considered pre- 
viously, the shape of the resonant disturbance now varies with time, producing 
continuous modification of the Mach cone. 

Note further that for each value of p equation (4.4) gives two resonant modes, 
hence $t, involves two Mach cones. Each must touch the acoustic pulse propa- 
gating into region I11 in much the same manner as previously described. Again 
the cones do not extend upstream beyond their curves of contact with the acoustic 
pulse, as before such a situation would involve poles lying within the integration 
contour in the w plane. 

We are now in a position to collect together our results for the stable field of 
the transmitted wave. This is illustrated in figure 2, which shows a section in the 
plane y = yo which contains the source. 

5. The unstable modes 
It remains to consider the contribution to the transmitted wave from those 

poles of the transmission coefficient which lie at  complex values of w. These occur 
at  the points 

w = +UZk ~ i~~2Z2+4a2(Z2+m2) -4u(Z2+m2)~(~2Z2+a2(Z2+m2) )?L~~ ,  (5.1) 
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provided that 

In  any far field analysis poles which lie in the lower half plane will give ex- 
ponentially small contributions and may therefore be neglected. Hence we shall 
consider only the effect of those poles which lie above the real w axis and outside 
the integration contour in the w plane. 

In  view of the nature of the expression (5.1) it is not possible to carry out an 
exact analysis, even using steepest descents. However, since we have growing 
modes, those modes with the largest growth rate will eventually dominate the 
solution (see also Benjamin 1961), and it seems desirable, therefore, that any 
approximate scheme of evaluation should tend to concentrate on these modes. 
For each fixed wave-number component I ,  the most rapidly growing waves satisfy 
lm/Zl 9 1. If we suppose, in fact that Iml 9 111 (N2-l)h, then (5.1) may be 
approximated by 

0 = +UZ++iU~I~. (5.3) 

A little analysis reveals that the condition for the pole at (5.3) to lie outside 
the integration contour, and so contribute to the transmitted wave, is 

2 - zo < +u(t - to), (5.4) 
which limit should therefore mark the depth of penetration of the dominant 
mode into the stationary ambient fluid. 

In keeping with the above approximation we may also set 

y1 = y2 = i(P+m2)3. (5.5) 

Now the growth rate of an infinitely small disturbance is infinitely large. This 
means that after integrating around the complex pole at  (5.3), the subsequent 
wave-number integration will diverge. In  practice, however, there will be an 
upper cut-off to the wave-number spectrum of the initial disturbance. Thus in 
order to gain further insight into the nature of the growing instability we shall 
suppose this to occur at  111 = R. If further the range of integration over m is 
restricted to Iml > 111 ( M 2 -  1)h in accordance with our previous approximation, 
then by expanding about the points of maximum growth rate in (1,  m) space, 
we readily derive the following approximate expression for the unstable 
contribution to the transmitted wave: 

(5.6) 
exp [A{$U(t - to) - M(x - x,)}] 
(2 - 2 0 )  [ ( z  -20) N - &U(t - to)]’  

X 

where C and 8 are functions of M and R alone. In  view of the nature of this 
approximation, which assumes the existence of a non-zero maximum growth 
rate given by the argument of the exponential in (5.6), this solution is clearly not 
valid in the neighbourhood of 

2-zo-*a(t-to) = 0. 

We have already seen, moreover, that there is in fact no contribution from these 
dominant modes if x - xo > &(t - to). 
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The expression for q5tu is interpreted as representing two growing disturbances 
moving outwards obliquely to the jet flow along the lines 

at a velocity equal to UM/2(1M2 - 1)i .  The region between these two disturbances 
contains other growing modes, but with smaller growth rates. Hence we have 
the picture of an initial disturbance triggering-off an instability inside a wedge 
of angle 2 tan-l ( ( M 2  - 1)t) downstream of the source on the surface of the jet, 
the maximum growth rates being along the edges of the wedge. Practical 
estimates of the growth rates would depend on a knowledge of the wave-number 
cut-off R, which should typically be of the order of the inverse shear layer thick- 
ness. 

y-yo = 2 (x-xo) (M2- l) t  (5.7) 

6.  Conclusion 
We may summarise the general features of the acoustic field of the pulse as 

follows : 
The arrival of the pulse at  the vortex sheet always triggers-off the Kelvin- 

Helmholtz instability of the interface. This results in the generation of a growing 
disturbance which moves downstream at half the jet velocity, its influence being 
largely confined to the neighbourhood of the interface. The effect is independent 
of the Mach number of the jet flow. 

Except in the zone of relative silence, the transmitted pulse may be predicted 
from a classical ray theory analysis, the amplitude being given in terms of a 
transmission coefficient. The pulse is diffuse in the zone of relative silence, and 
switches on t o  a finite level at  the wave front, the amplitude then decaying 
inversely as the distance behind the front. 

When the Mach number exceeds 2 the arrival of the pulse triggers-off a neutral 
disturbance in the interface which proceeds to move downstream at half the 
jet velocity generating a Mach cone running ahead of the acoustic pulse. Two 
similar disturbances are created if the Mach number is greater than 2 J 2 .  These 
Mach waves greatly augment the acoustic pulse strength at  their curves of con- 
tact with the pulse, and correspond to infinities of the transmission coefficient. 

Finally let us note that it is precisely in the region downstream of the source 
where ideas of geometrical acoustics fail. Our analysis predicts the growth of 
instabilities together with the propagation of broad fronted pulses of enhanced 
amplitude into this region ahead of the acoustic pulse. It is evident, therefore, 
that an explanation of the experimentally observed zone of silence downstream 
of the source must await a more complete and non-linear analysis. 

This work was supported by the Bristol Engine Division of Rolls-Royce Ltd. 
and the Ministry of Technology. 
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